pISSN 2073-2872 eISSN 2311-875X

Инновации и инвестиции

ЭКОНОМЕТРИЧЕСКИЙ АНАЛИЗ ФАКТОРОВ ИННОВАЦИОННОГО РАЗВИТИЯ ЭКОНОМИКИ РОССИИ^{*}

Светлана Владимировна ИСТОМИНА^а, Татьяна Анатольевна ЛЫЧАГИНА^b, Елена Анатольевна ПАХОМОВА^c

^а кандидат технических наук, главный специалист АО «Атомэнергопроект» (предприятие ГК «Росатом»),

Москва, Российская Федерация

istomina_sv@aep.ru

https://orcid.org/0000-0002-3600-4447

SPIN-код: 9529-8558

^b кандидат физико-математических наук, доцент, старший научный сотрудник,

Объединенный институт ядерных исследований, Дубна, Российская Федерация

lychagina@jinr.ru

https://orcid.org/0000-0002-9047-2399

SPIN-код: 5675-8867

с доктор экономических наук, кандидат технических наук, доцент, профессор кафедры экономики,

Государственный университет «Дубна», Дубна, Российская Федерация

rector@uni-dubna.ru

https://orcid.org/0000-0002-3572-9614

SPIN-код: 3500-1423
• Ответственный автор

История статьи:

Получена 14.06.2018 Получена в доработанном виде 25.07.2018 Одобрена 10.08.2018 Доступна онлайн 15.10.2018

УДК 005.591.6, 334.021 **JEL:** O32, O38, O39

Аннотация

Предмет. Факторы, определяющие инновационный потенциал, и организационноэкономические отношения, возникающие в процессе формирования и реализации инновационного потенциала.

Цели. Выделение ключевых факторов, определяющих инновационный потенциал экономики нашей страны.

Методология. Продолжение разработки инструментально-методического подхода к адаптации модели тройной спирали к условиям России, основанного на представлении об институтах трех пространств (Знаний, Согласия, Инноваций), каждое со своей сущностью (Университет, Производство, Государство) соответственно. Исследованы возможности возникновения инноваций при взаимодействии Университета, Производства и Государства путем непосредственного определения качества связи между отдельными факторами пространств с выявлением взаимовлияния каждого из пространств на процесс возникновения инноваций.

Результаты. Исследуемые в работе статистические данные разделены на три части по принадлежности соответствующим пространствам Знаний, Согласия, Инноваций, исследованы количественные связи между ними. Построены эконометрические модели, позволившие выделить факторы, влияющие на инновационный потенциал экономики нашей страны. На основе полученных моделей сделаны статически обоснованные количественные выводы.

Выводы. Выявлены основополагающие факторы, влияющие на количество разработанных инноваций в России за рассмотренные 15 лет – уровень федерального финансирования, доля инновационных товаров во всем объеме отгруженных товаров, наличие специалистов с учеными степенями. С точки зрения взаимосвязи пространств позитивно проявило себя пространство Знаний, что может быть истолковано как усиление вузовской науки. Обобщение результатов количественного анализа вкупе с имеющейся фактологической информацией позволяет сформулировать, что увеличение темпов экономического роста страны возможно при росте государственного финансирования инновационных разработок, однако от государства требуется реальное повышение внимания к отечественным образованию и науке.

© Издательский дом ФИНАНСЫ и КРЕДИТ, 2018

Ключевые слова:

инновационный потенциал, моделирование, тройная спираль, корреляция, регрессионный анализ

Для цитирования: Истомина С.В., Лычагина Т.А., Пахомова Е.А. Эконометрический анализ факторов инновационного развития экономики России // Национальные интересы: приоритеты и безопасность. – 2018. – Т. $14, \, N^{\circ} \, 10.$ – С. $1943 \, – \, 1960.$

https://doi.org/10.24891/ni.14.10.1943

Введение

В настоящее время значимость инноваций в экономическом развитии страны значительно возрастает. Инновационный потенциал и возможность эффективно его использовать являются важными элементами появления стабильного экономического роста в стране. В связи с этим актуальной является задача выявления факторов, оказывающих влияние на развитие инновационного потенциала экономики России. Вопросам, связанным с исследованием этой задачи, посвящены, например, работы И.Г. Дежиной и В.В. Киселёва [1], Г. Хамела и К.К. Прахалада [2], Г. Чесбро [3], Г.Г. Малинецкого Б.З. Мильнера и Т.М. Орловой [5], А.Е. Карлика с соавторами [6], Н.В. Смородинской [7], Н.И. Ивановой [8], А.А. Аузана [9], О.А. Андрюшкевича и И.М. Денисовой [10], К. Клейтона и М. Рейнора [11].

Ha сегодняшний Россия день имеет достаточный научно-технический и кадровый потенциал, НО вследствие длительного социально-экономического кризиса, продолжающегося с начала 1990-х гг., страна мирового весьма отстала OT уровня инновационного развития производства.

В России и за рубежом создаются методики по прогнозированию инновационного развития тройственном региона, основанные на взаимодействии «Университет - Государство -Производство». Описанию этих методик посвящены работы Г. Ицковица, Е.А. Пахомовой, С.А. Панова и А.В. Пахомова, Н.В. Смородинской, В.Ф. Коробовой и Ю.О. Жигаловой, А.Р. Бахтизина Е.В. Акинфеева, М.А. Бендикова Е.Ю. Хрусталёва [12-18]. Использование этих позволит методов выявить факторы,

влияющие на развитие экономики. Так, применение модели тройной спирали (далее - TC) во многих странах способствует развитию национальных инновационных систем, поэтому представляется полезным ее адаптация для условий РФ.

В соответствии с этой моделью пересечение трех пространств - Знания, Согласия и Инноваций порождает возникновение области общих интересов, способствующих началу совместной работы трех институтов: Университета, Производства и Государства, что приводит к развитию инновационной деятельности. Разработанный математический инструментарий адаптированной модели тройственного взаимодействия определения инновационного потенциала региона¹ основан на эмпирической базе примеров зарождения и развития инноваций, созданной Г. Ицковицем, и на представлении οб институтах трех пространств Университета, Производства и Государства [12]. Такой подход существенно отличает представленное в данной статье исследование от аналогичных по целям разработок. Кроме того, следует подчеркнуть, что в отличие от исследований [10-12], в нашей работе возникающие взаимодействия анализируются количественно, что дает возможность для более глубокого осмысления проявляющихся тенденций.

Важным аспектом использования модели для получения достоверных результатов является правильное смысловое сопоставление данных Росстата сущности пространств «Знания –

 $^{^{\}circ}$ Статья подготовлена при поддержке РФФИ в рамках проекта № 16-06-00054 «Инструментально-методический подход к адаптации модели тройной спирали для условий России с учетом исторической ретроспективы».

¹Истомина С.В., Лычагина Т.А., Пахомова Е.А. Перспективы развития модели тройной спирали в России // Национальные интересы: приоритеты и безопасность. 2016. Т. 12. Вып. 12. С. 119–132; Истомина С.В., Лычагина Т.А., Пахомова Е.А., Пахомов А.В. Методика определения инновационного потенциала социально-экономических объектов различных иерархических уровней с использованием элементов векторного анализа и теории поля // Национальные интересы: приоритеты и безопасность. 2018. Т. 14. Вып. 1. С. 97–120.

Инновации». Очевидно, что пространство Знания, к которому относятся Университеты, содержит такие показатели Росстата, как количество инновационных число исследователей, разработок, осуществляющих эти разработки, количество научно-исследовательских учреждений, изобретения. выпускающих Пространство Инноваций основано на Производстве, которое непосредственно выпускает инновации, поэтому наполнено такими показателями, как количество организаций, осуществляющих выпуск инновационных товаров, количество выпущенных инновационных товаров. Пространство Согласия, с точки зрения Государства, его функций регулирования и управления, определяется затратами финансирование выпуска и внедрения, а также доходов от реализации инновационных товаров.

заполнении пространств соответствующими ИΧ сущности характеристиками Росстата следует установить наличие связи не только между отобранными показателями одного пространства, но и между показателями разных пространств. Это необходимо для того, чтобы в выделенные для модели показатели не попали те, которые подходят по смыслу, но не отражают действительную реальность. В качестве примера для одного из пространств пространства Знаний - приведем показатель численности персонала, занятого научными исследованиями и разработками, который, информации Росстата, состоит исследователей, техников, вспомогательного и прочего персонала. Если вкладом инновационное развитие исследователей и техников можно считать непосредственно разработку новых продуктов, то прямое участие в появлении новых инноваций двух последних категорий персонала, занятого научными исследованиями и разработками, весьма сомнительно.

Связь между показателями разных пространств следует проанализировать из соображений того, чтобы при заполнении пространства Знаний показателями,

отвечающими за инновационное развитие, пространство Согласия попали показатели, характеризующие средства, выделяемые государством именно на эти цели поддержку молодых например), поскольку это показатели других областей исследования. Чтобы отбросить все сомнения по данному поводу и, TC, адаптируя модель наполнить (пространства) компоненты показателями, соответствующими их сути, следует провести анализ ПО выявлению связи показателями разных пространств для того, чтобы вычленить и убрать из дальнейшего рассмотрения те, которые подходят по смыслу, но имеют некие «подводные камни», в связи с чем их использование в модели неправомочно.

Данной работой авторское исследование продолжено в части определения возможности возникновения инноваций взаимодействии Университета, Производства и Государства на основе анализа качества СВЯЗИ между отдельными показателями (факторами) пространств C выявлением уровней влияния каждого из пространств на процесс возникновения инноваций.

Анализ факторов инновационного развития экономики РФ с помощью корреляционно-регрессионных методов

В ходе проведения эконометрического анализа показателей инновационной деятельности в РФ в целях выделения главных показателей, определяющих инновационный потенциал экономики нашей страны, были построены эконометрические модели для определения количественной связи между показателями инновационной деятельности на основе статистических данных Росстата ПО инновационному развитию за $2000-2015 \text{ гг.}^2$.

В *табл. 1* представлено наполнение трех пространств – Знания, Согласия и Инноваций – показателями из данных Росстата по науке и инновациям [12]. Для заполнения пространств выбраны следующие данные Росстата:

 $^{^2}$ Официальный сайт Федеральной службы государственной статистики. URL: http://gks.ru

1) пространство Знаний:

- -3_1 доля исследователей, имеющих ученую степень, %;
- -3_2 доля выданных патентов всего от числа поданных заявок на выдачу патентов, %;
- -3_3 доля научно-исследовательских организаций от числа организаций, выполнявших исследования и разработки, %;
- -3_4 доля исследователей от общего объема численности персонала, %;

2) пространство Согласия:

- $-C_1$ доля расходов на гражданскую науку из средств федерального бюджета в общих расходах, федерального бюджета, %;
- $-C_2$ доля расходов на гражданскую науку из средств федерального бюджета в ВВП, %;
- $-C_3$ доля внутренних затрат на научные исследования и разработки в ВВП, %;

3) пространство Инноваций:

- U_1 доля затрат на технологические инновации в общем объеме отгруженных товаров, произведенных работ, услуг организаций промышленного производства, %;
- U_2 доля инновационных товаров, выполненных работ, услуг в общем объеме отгруженных товаров, выполненных работ, услуг организаций, %;
- U_3 инновационная активность организаций (доля организаций, которые осуществляют технологические, организационные, рекламные инновации в отчетном году, в общем числе осмотренных организаций), %.

Проанализируем относительные показатели (см. *табл. 1*). Развитие человеческого потенциала в стране во многом определяется состоянием науки и инновационных

разработок и является важным конкурентным преимуществом высокоразвитой страны.

Доля исследователей, имеющих ученую степень, в общей численности персонала, занятого научными исследованиями и разработками за период 2000–2015 гг. не превышала 15%. Значение этого показателя росло от года к году, что показывает положительную динамику численности исследователей с учеными степенями.

Доля выданных патентов в общем числе поданных заявок на выдачу патентов за период 2005-2015 гг. имеет высокое значение, динамика роста в рассматриваемом периоде не была стабильной. Так, с 2005 до 2008 г. наблюдался рост показателя, рекордное значение было в 2008 г. и составило 97,5%, а с 2009 по 2015 г. рекордное значение было в 2013 г. и составляло 88,6%. В целом за 11 лет выданных значение ДОЛИ патентов опускалось ниже 64,9%, что говорит о положительных инновационных сдвигах в российской экономике.

Доля научно-исследовательских организаций организаций, выполнявших исследования разработки, период 2000-2015 гг. снижалась от года к году. Так, с 2000 по 2010 г. значение показателя было выше 51,5%, а с 2011 по 2015 г. он снизился с 48% до 40%. Уменьшение доли научноисследовательских организаций тесно взаимосвязано с проводимыми федеральными программами по оптимизации организаций. Перестройка выполнялась путем ликвидации организаций, которые прекратили научную деятельность.

Доля исследователей, занятых научными разработками, OT общей численности персонала в период 2000-2015 гг. имеет положительную динамику. Значение показателя за 15 лет не превышало 52%; это говорит о том, что почти половина персонала принимала участия В научной деятельности, являлась a «прочим персоналом». В 2015 г. значение показателя было равно 51,35% и являлось рекордным за этот период, в 2000 г. оно составляло 47,98%. Таким образом, доля исследователей за рассматриваемый период значительно не изменилась.

Государственный бюджет выделяет средства на развитие новейших научных направлений, на внедрение программ реструктуризации науки и поддержки субъектов инновационной деятельности. В расходной доли федерального бюджета выделения на науку отражены по двум направлениям: фундаментальные и прикладные научные исследования³.

В России расходы на научную деятельность ключевой являются проблемой государственной политики, И благополучное решение зависит ОТ эффективности научной деятельности развития ее потенциала. Доля расходов на гражданскую науку из средств федерального бюджета в расходах федерального бюджета за период 2000-2015 гг. имеет положительную динамику. Рекордное значение этого показателя наблюдалось в 2010 г. и составило 3,19%. В целом за 15 лет значение показателя было очень низким.

Доля расходов на гражданскую науку из средств федерального бюджета в ВВП за период 2000-2015 гг. имела нестабильную динамику. Максимального значения данный показатель достигал в 2013 г. и составлял 0,6%, что является весьма низким. рассматриваемый период минимальное значение показателя зафиксировано в 2000 г. (0,24%). Стоит отметить, что за все время данный показатель не достигал даже 1%. Неудивительно, что Россия отстает от многих стран по расходам на НИОКР (здесь под расходами на НИОКР понимаются текущие и капитальные, государственные и частные, расходы). Собственно исследования разработки охватывают фундаментальные исследования, прикладные исследования и экспериментальные разработки (maбл. 2).

 $URL: \ http://csrs.ru/archive/stat_2016_finance/finance_2016.pdf$

Доля внутренних затрат на научные исследования разработки В валовом И внутреннем продукте за период 2000-2015 гг. имеет нестабильную динамику. Максимальное значение показателя наблюдалось в 2013 г. (1,29%), а минимальное - в 2011 г. (1,02%). Доля затрат за рассматриваемый период имеет низкое значение, что говорит о недостаточном финансировании научных исследований и разработок.

Основным источником финансирования инновационной деятельности в России являются собственные средства организаций. В 2015 г. за счет собственных средств организаций было профинансировано 53,5% всех затрат на технологические инновации⁴.

Удельный вес затрат на технологические инновации в общем объеме отгруженных товаров, выполненных работ, услуг организаций промышленного производства в процентах за период 2012–2015 гг. не превышал 2,2%. Динамика данного показателя в рассмотренный период является нестабильной.

Удельный вес инновационных товаров, выполненных работ, услуг в общем объеме отгруженных товаров, выполненных работ, услуг организаций за период 2006–2015 гг. в целом имеет положительную динамику. Максимальное значение доли инновационных товаров было в 2013 г. и составляло 9,2%, а минимальное значение – в 2009 г. (4,5%).

Инновационная активность организаций за период 2010–2015 гг. не превышает 10,4%. Максимального значения этот показатель достигал в 2011 г. и составлял 10,4%, а минимального – в 2015 г. (9,3%). В целом инновационная активность организаций за рассмотренный период значительно не изменилась, но после максимального значения в 2011 г. данный показатель имеет отрицательную динамику.

³ Информационно-статистический материал «Статистика науки и образования». Затраты и источники финансирования научных исследований и разработок, 2016.

⁴ Информационно-статистический материал «Статистика науки и образования». Инновационная деятельность в Российской Федерации, 2016.

 $URL: http://csrs.ru/archive/stat_2016_inno/innovation_2016.pdf$

Анализ показателей инновационной деятельности в РФ в целях выделения главных определяющих инновационный факторов, потенциал экономики нашей страны, был выполнен с помощью программы STATISTICA. Матрица коэффициентов корреляции, на основе которой выявлены связи между показателями, приведена в табл. 3.

Исходя из матрицы коэффициентов корреляции и логического подбора связей между показателями построены и проанализированы регрессионные зависимости, где N – число наблюдений (в годах), R^2 – коэффициент детерминации (табл. 4).

уравнение Регрессионное 1: $U_2 = 4.83C_1 - 6.06$, где U_2 инновационных товаров, C_1 - доля расходов науку гражданскую ИЗ средств федерального бюджета, в общих расходах федерального бюджета имеет коэффициент детерминации $R^2 = 0.84$, который является суммарной мерой качества уравнения регрессии. Близкое значение коэффициента детерминации к единице полностью гарантирует высокого качества регрессии. Значение статистики Дарбина - Уотсона *DW* равняется 1,92 и попадает в область отрицания автокорреляции (то есть гипотеза отсутствии автокорреляции может принята). Параметры построенной регрессионной зависимости свидетельствуют, что при увеличении доли расходов на гражданскую науку из средств федерального бюджета на 1% доля инновационных товаров, выполненных работ, услуг в общем объеме отгруженных товаров увеличится в среднем на 4,8%.

Регрессионное уравнение 2: $U_2 = 15,8C_2 - 1,45$, где U_2 доля инновационных товаров, C_2 - доля расходов гражданскую науку средств ИЗ на федерального бюджета в ВВП, имеет средний коэффициент детерминации R^2 = 0,4. Значение 3_1 = 2,49 C_1 + 7,62, где

статистики DW, равное 0,9, попадает в область неопределенности, то есть гипотеза об отсутствии автокорреляции не может быть ни принята, ни отклонена. При увеличении доли расходов на гражданскую науку из средств федерального бюджета в ВВП на 1% доля инновационных товаров, выполненных работ, услуг в общем объеме отгруженных товаров увеличится в среднем на 15,8%. Следует отметить, что показатель C_2 (расходы на гражданскую науку из средств федерального бюджета к ВВП) за период 2000-2015 гг. имеет значение меньше 1%.

Регрессионное уравнение *3*: $U_2 = 1,563_1 - 15,66$, где U_2 доля инновационных товаров, 3_1 исследователей, имеющих ученую степень, имеет средний коэффициент детерминации R^2 = 0,62. Значение статистики *DW* равняется 0,7 и попадает в область положительной автокорреляции, TO есть гипотеза отсутствии автокорреляции не может быть отклонена. Следовательно, при увеличении исследователей, имеющих ученую степень, на 1% доля инновационных товаров, выполненных работ, услуг в общем объеме отгруженных товаров увеличится в среднем на 1,6 %.

Регрессионное уравнение 4: $H_2 = 1,4563_4 - 66,66,$ доля инновационных товаров, доля исследователей, имеет средний коэффициент детерминации $R^2 = 0.61$.

Значение статистики DW, равное 0,83, область положительной попадает автокорреляции, то есть гипотеза отсутствии автокорреляции не может быть отклонена. При увеличении доли исследователей на 1% доля инновационных товаров, выполненных работ, услуг в общем объеме отгруженных товаров увеличится в среднем на 1,5%.

Регрессионное уравнение *5* : доля исследователей, имеющих ученую степень, C_1 – расходы на гражданскую науку из средств федерального бюджета расходам федерального бюджета, имеет высокий $R^2 = 0.85$. коэффициент детерминации статистики DW, равное Значение 1,39, попадает в область отрицания автокорреляции, есть гипотеза об отсутствии автокорреляции может быть принята. При увеличении доли расходов на гражданскую науку из средств федерального бюджета на 1% доля исследователей, имеющих степень, увеличится в среднем на 2,5%.

6: Регрессионное уравнение $3_1 = 10,32C_2 + 8,97,$ где доля исследователей, имеющих ученую степень, C_2 – расходы на гражданскую науку из средств федерального бюджета к ВВП, имеет высокий $R^2 = 0.88$. детерминации коэффициент статистики DW, 1,77, Значение равное попадает в область отрицания автокорреляции, гипотеза об отсутствии есть автокорреляции может быть принята. При увеличении доли расходов на гражданскую науку из средств федерального бюджета в ВВП на 1% доля исследователей, имеющих ученую степень, увеличится в среднем на 10,3%. Следует отметить, что показатель «Расходы на гражданскую науку из средств федерального бюджета к ВВП» за период 2000-2015 гг. имеет значение меньше 1%.

Регрессионное уравнение C_1 = 3,73 C_2 + 0,72, где C_1 – доля расходов на гражданскую науку из средств федерального бюджета в расходах федерального бюджета, C_2 – расходы на гражданскую науку из средств федерального бюджета к ВВП, имеет высокий $R^2 = 0.82$. коэффициент детерминации Значение статистики DW, равное попадает в область неопределенности, то есть гипотеза об отсутствии автокорреляции не может быть ни принята, ни отклонена. При увеличении расходов на гражданскую науку из средств федерального бюджета к ВВП на 1% доля расходов на гражданскую науку из средств федерального бюджета в расходах федерального бюджета увеличится в среднем на 3,7%.

Таким образом, факторами, важными влияющими на количество разработанных инноваций в РФ за последние 15 лет, следует признать уровень финансирования и наличие специалистов учеными степенями. C Представляет интерес построение подобных зависимостей для других стран в целях сравнения эффективности использования ресурсов при разработке инноваций. В развитых странах вкладывается гораздо больше средств в разработку инноваций, чем в нашей стране. Так. например, Россия значительно отставала по объему финансирования НИОКР в 2012 г. от стран, стоящих на первых трех позициях по этому показателю (рис. 1). Размеры финансирования НИОКР в России составляют всего около 8,37% от объема расходов Соединенных Штатов, около 15,64% - от расходов Китая и около 25% - от объема расходов Японии. Однако стоит заметить, что данные показатели значительно увеличились с 2005 г., когда составляли приблизительно 5,81%, 22,99% и 14,39% соответственно.

Доля расходов на НИОКР США в 2013 г. составляла 28,1% от мировых, Китая – 19,6%, а РФ – только 1,7%, что подтверждает факт недостаточного финансирования науки в нашей стране 5 .

Российские закономерности формирования инновационной экономики имеют свои особенности, отличные от стран Запада и США. И хотя Россия является одним из лидеров научно-технического направления, в структуре ВВП по-прежнему значительную долю занимает продукция добывающих отраслей. По статистике, российский экспорт минеральных ресурсов составляет около 70%, а машин и оборудования – 6%.

В соответствии с Глобальным рейтингом инноваций – 2015 Россия находится на 48-м

 $^{^5\,\}text{OECD}$ (2014) Main Science and Technology Indicators. URL: http://oecd.org/sti/msti.htm

месте по уровню инновационного развития из 141 страны. Данный индекс дает возможность объективно оценивать эффективность развития инноваций по странам, рассчитываемый более чем из 80 показателей⁶.

Высший рейтинг имеют Великобритания. Швейцария, Америка, Финляндия, Швеция характеризуются страны высокой степенью дохода. Россия отстает от них по многим показателям. Совокупный уровень инновационной активности организаций имеет значение 10,9%, доля инновационных товаров и работ равна 8,9%, расходы на технологические инновации 2013 г. составили 746 778.2 млн руб. Доля организаций, осуществляющих инновационную деятельность в России, составляла 9,7% в 2013 г., в то время как в 2005 г. данный показатель был равен 9,3%. Несмотря на то что внутри страны замечается положительная тенденция, по сравнению с развитыми странами Россия пока отстает. По вложениям в науку первые места занимают США, Китай, Южная Корея, Иран. Россия на их фоне демонстрирует медленный рост, учитывая тот доля прямых И непрямых факт, что бюджетных расходов на финансирование науки достигает 70%⁷.

Инновационное развитие экономики требует соответствующих уровней образования и также внедрения вложений, новых организационных моделей и программ. Так, например, в России 8 декабря 2011 г. была утверждена Стратегия инновационного развития РФ на период до 2020 г. Как позитивный пример можно отметить тот факт, что почти все крупные технические вузы на сегодняшний день с успехом внедряют коммерческие отношения в свои научные разработки через организованные при вузах инновационные предприятия. созданные в соответствии с Федеральным законом от 29.07.2017 № 217-ФЗ (далее -ФЗ-217). Такого рода стратегии, развитие и финансирование малых инновационных предприятий при вузах необходимы РФ для сокращения разрыва по уровню развития инновационного потенциала с развитыми странами мира.

Имеющийся опыт образования малых инновационных предприятий на базе университетов в РФ

Малые инновационные предприятия (МИП) – это предприятия, разрабатывающие и внедряющие в производство наукоемкие технологии и изделия, выступающие в качестве связующего звена между наукой и производством.

Для обеспечения законной деятельности МИП органами государственной власти разработан ряд нормативно-правовых актов, в частности законы, по которым научные и учебные учреждения могут создавать МИП 8 . Информация о МИП в российских вузах систематизирована в maбл. 5.

Белгород. Белгородский государственный технологический университет им. В.Г. Шухова - уникальное высшее учебное заведение России. Почти за 60-летнюю историю своей деятельности вуз подготовил более 65 тыс. высококвалифицированных специалистов для строительства и стройиндустрии. Университет лидером является ПО числу малых инновационных предприятий, нем образовано более 100 МИП, которые работают разных направлениях И являются победителями многочисленных конкурсов и проектов.

Томск. Инновационный пояс ТПУ насчитывает 96 МИП, из них 45 созданы в рамках Φ 3-217. Объем выручки МИП, созданных в рамках Φ едерального закона N° 217- Φ 3 за время реализации программы, превысил 210 млн руб. 9.

 $^{^6}$ Cornell University, INSEAD. The Global Innovation Index, 2015. URL: http://wipo.int/edocs/pubdocs/en/wipogii_2015.pdf

 $^{^7 \, \}rm OECD$ (2014) Main Science and Technology Indicators. URL: http://oecd.org/sti/msti.htm

 $^{^8}$ Баклин А.А. Малые инновационные предприятия при вузе: проблемы, решения, перспективы. URL: http://9000innovations.ru/files/contests/works/statya_mipy_proble my.pdf

 $^{^9}$ Официальный сайт Томского политехнического университета. URL: https://tpu.ru

Казань. Вокруг Казанского (Приволжского) федерального университета создан пояс МИП, ориентированных разработку на новых продуктов и технологий, превращающих знания в товар или услугу¹⁰. В университете образовано более 35 предприятий, которые имеют разные направления и цели. У каждого предприятия есть свои партнеры и спонсоры. Основными направлениями МИП в Казанском федеральном университете являются медицина, фармацевтика и строительство. В направлении информационных технологий компания выполняет уникальные решения в сфере контроля процессов и состояния сложных систем и разрабатывает на их базе технологии и оборудование для всевозможных отраслей промышленности, науки, медицины, сельского хозяйства. Компания разрабатывает вакуумные технологические комплексы и реализует их внедрение для всевозможных продуктов: нанесение оптических покрытий на неметаллы; нанесение защитных покрытий на металлы.

Астрахань. На основании ФЗ-217 при Астраханском государственном техническом университете (АГТУ) были созданы хозяйственные общества в форме МИП; сформирована институциональная база для их создания и развития.

Санкт-Петербург. Из двух десятков вузов, где создано больше всего МИП, Санкт-Петербург представлен Университетом ИТМО (Санкт-Петербургский государственный университет информационных технологий, оптики), механики и где разместились 29 фирм, в общероссийском зачете вуз занимает 9-ю строчку, но при этом фактически является лидером города и федерального Из числа петербургских округа. BV30B 2-е место занимает ЛЭТИ - 13 предприятий; Университет аэрокосмического приборостроения, где основано 11 фирм; за ним следует Лесотехнический университет им. С.М. Кирова. Санкт-Петербургский государственный университет Политехнический университет заняли 6-е и 7-е места, где имеются по шесть МИП. При этом число МИП в СПбГУ растет 11 .

Алтай. Алтайский государственный университет (АлтГУ) ведущий центр классического университетского образования, науки и культуры на Алтае, ориентированный на развитие экономики и социальной сферы Алтайского края и сопредельных территорий, а также обеспечивающий трансграничное сотрудничество со странами Центральной Азии в образовательной, научно-технической и гуманитарной областях. Инновационный пояс АлтГУ включает в себя инфраструктуру, способствующую развитию инновационного предпринимательства в университете коммерциализации прикладных разработок (опытно-конструкторское бюро, инновационнотехнологический бизнес-инкубатор, центр трансфера технологий), а также более 25 МИП, созданных при участии университета Ф3-217. Деятельность шести направлена на внедрение технологических инноваций в АПК и коммерциализацию инновационных разработок университета в области развития систем точного земледелия, биотехнологии, производства и переработки сельскохозяйственной продукции.

Тюмень. При Тюменском государственном нефтегазовом университете (ТюмГНГУ) работает ряд МИП в направлении нефтегазодобычи, электроники, машиностроения, приборостроения, лазерных технологий. Малые предприятия являются важным фактором в повышении скорости внедрения научных исследований разработок, ускорении коммерциализации результатов научных исследований, что оказывает большое влияние динамику на инновационного $ЭКОНОМИКИ^{12}$. развития Процесс развития инновационных проектов в виде МИП подтверждается тем, что 23 мая 2012 г. прошла первая в России сделка по

¹⁰ Официальный сайт КФУ. URL: http://inno.kpfu.ru

¹¹ Информационный интернет-канал. URL: http://rsci.ru/innovations/small_innovative_enterprises/233373.php

 $^{^{12}}$ *Чараева М.В.* Развитие малого инновационного предпринимательства в Российских регионах (на примере Ростовской области) // Экономикс: Региональная экономика. 2013. \mathbb{N}^2 3. С. 40–46.

инвестированию венчурным фондом ООО «Фонд посевных инвестиций РВК» МИП – ЗАО «ВООП-Консалтинг» (Институт катализа им. Г.К. Борескова Сибирского отделения РАН), зарегистрированного в соответствии с ФЗ-217¹³.

Инновации должны быть основной движущей силой экономического и социального развития страны, что влечет необходимость государственной поддержки инновационной деятельности, выражающейся в различных государственных программах. Примером может служить государственная программа «Развитие образования» на 2013-2020 гг.», утвержденная постановлением Правительства Российской Федерации от 15.04.2014 № 295, цель которой - обеспечение высокого качества российского образования, повышение эффективности реализации молодежной политики интересах инновационного ориентированного социально развития страны.

Выводы

проведенного в данной статье За основу изучения возникновения возможности инноваций взята идея тройственного взаимодействия «Университет - Производство - Государство» как механизма зарождения новых технологий. Здесь уместно отметить, почему именно западное исследование взято за основу для развития инструментария моделирования в целях прогнозирования: представляется, В отличие что многочисленных отечественных исследований институционального характера именно модель Г. Ицковица высвечивает основу, очищенную от детале $\check{\mathsf{u}}^{14}$, которая может поддаваться математическому моделированию, причем такому, чтобы сделать результаты его пригодными к реальному внедрению.

В наших более ранних работах, как уже было отмечено, мы адаптировали для российских условий вариант модели ТС, обозначив прикрепление к каждой базовой структуре (Университету, Производству, Государству) функционально определяющего пространства (Знания, Согласия, Инноваций), наполненного характерными показателями, выбранными из официальных статистических источников.

В целях заполнения пространств соответствующими показателями проведен анализ данных Росстата по разделу «Наука и инновации». Это позволило выполнить полное заполнение пространств определяющими их характеристиками. Для выявления главных факторов, определяющих инновационный потенциал экономики, исследована сила связи между показателями пространств, для чего корреляционный применен анализ. В результате построен ряд регрессионных зависимостей между показателями разных пространств, на основе анализа которых выявлены главные показатели, оказывающие инновационной влияние на развитие деятельности России в период 2000-2015 гг.

Результаты эконометрического моделирования. проведенного на основе пространственного подхода модели тройной спирали, позволили выявить основополагающие факторы, влияющие количество разработанных на инноваций в России за рассмотренные 15 лет - уровень федерального финансирования, доля инновационных товаров во всем объеме отгруженных товаров, наличие специалистов с vчеными степенями**.** C точки взаимосвязи пространств, следует отметить, что логичный, на первый взгляд, и лишенный неожиданностей вывод о взаимовлиянии всех пространств следующий трех имеет позитивный акцент: проявило себя Знаний. пространство что может быть истолковано как усиление вузовской науки.

Обобщение результатов проведенного нами количественного анализа вкупе с имеющейся фактологической информацией позволяет сформулировать следующую точку зрения: увеличение темпов экономического роста

¹³ Информационный интернет-канал. URL: http://rsci.ru/innovations/small_innovative_enterprises/233373.php

¹⁴ Это не значит, что детали следует игнорировать. Наоборот, наращиванием на основу деталей – как листьев на ветки и ствол – можно создать распределенную систему, пригодную для моделирования и прогнозирования реальной экономической ситуации, а затем с помощью информационных технологий преобразовать ее в человеко-машинный формат.

страны возможно при росте государственного финансирования инновационных разработок. Отметим, что именно логичность и отсутствие неожиданностей в полученных результатах заслуживают, по нашему мнению, внимания:

академический подход и сухие официальные данные, очищенные от субъективности и эмоциональности, настойчиво требуют от государства реального повышения внимания к отечественным образованию и науке.

Таблица 1 Три пространства

Table 1
Three spaces

Год	Знания	Знания					Согласия			Инноваций		
	<i>3</i> ₁	$\boldsymbol{\mathit{3}}_{2}$	3 ₃	$\boldsymbol{3_4}$	C_1	C_2	C_3	И ₁	U_2	U_3		
2000	11,93	_	65,53	47,98	1,69	0,24	1,05	-	-	_		
2001	11,79	-	66,31	47,67	1,79	0,26	1,18	-	-	-		
2002	11,75	-	67,33	47,62	1,51	0,29	1,25	-	-	-		
2003	11,86	-	67,53	47,73	1,76	0,31	1,29	-	-	-		
2004	11,9	-	67,4	47,83	1,76	0,28	1,15	-	-	-		
2005	12,23	64,97	59,31	48,1	2,19	0,36	1,07	-	-	-		
2006	12,33	70,98	56,57	48,19	2,27	0,36	1,07	-	4,7	-		
2007	12,95	77,17	51,45	49,04	2,22	0,4	1,12	-	4,6	-		
2008	13,27	97,53	52,54	49,37	2,14	0,39	1,04	-	5	-		
2009	13,64	77,08	53,11	49,73	2,27	0,56	1,25	-	4,5	-		
2010	14,27	77,22	52,69	50,09	2,35	0,51	1,13	-	4,8	9,5		
2011	14,89	77,51	48,4	50,97	2,87	0,53	1,02	-	6,3	10,4		
2012	15,05	76,08	48,91	51,3	2,76	0,53	1,05	1,8	8	10,3		
2013	14,88	88,64	47,68	50,76	3,19	0,6	1,06	2,2	9,2	10,1		
2014	14,96	78,21	46,86	51,06	2,95	0,56	1,09	1,8	8,7	9,9		
2015	15,09	64,97	40,91	51,35	2,81	0,54	1,13	2,1	8,4	9,3		

Источник: авторская разработка

Source: Authoring

Таблица 2 Затраты некоторых стран на НИОКР, % к ВВП

Table 2
R&D costs of countries, percentage of GDP

Страна	2000	2005	2010	2011	2012	2013	2014
Южная Корея	2,2	2,6	3,5	3,7	4	4,1	4,3
Израиль	3,9	4	3,9	4	4,1	4,1	4,1
Германия	2,4	2,4	2,7	2,8	2,9	2,8	2,9
Китай	0,9	1,3	1,7	1,8	1,9	2	2
Российская Федерация	1	1,1	1,1	1,1	1,1	1,1	1,2
Украина	1	1,2	0,8	0,7	0,8	0,8	0,7
Соединенные Штаты Америки	2,6	2,5	2,7	2,8	2,7	2,7	•••

Источник: The World Bank *Source:* The World Bank data

Таблица 3 Матрица коэффициентов корреляции

Table 3 A matrix of correlation coefficients

Переменна	<i>3</i> ₁	3 ₂	3 ₃	34	C ₁	C_2	C ₃	И ₁	И ₂	И ₃
Я	-	_		-	-	-	ŭ	-	=	
\mathcal{S}_1	1	-0,94	-0,55	0,99	-0,95	-0,94	0,5	-0,3	-0,87	-0,48
32	-0,94	1	0,77	-0,92	0,83	0,81	-0,76	0,18	0,69	0,73
33	-0,55	0,77	1	-0,45	0,28	0,25	-0,96	-0,42	0,07	0,99
$\overline{B_4}$	0,99	-0,92	-0,45	1	-0,98	-0,97	0,44	-0,44	-0,92	-0,39
<i>C</i> ₁	-0,95	0,83	0,28	-0,98	1	0,99	-0,29	0,59	0,97	0,22
C_2	-0,93	0,81	0,25	-0,97	0,99	1	-0,26	0,61	0,97	0,19
C_3	0,49	-0,76	-0,96	0,44	-0,28	-0,26	1	0,24	-0,05	-0,99
<u>и</u> 1	-0,3	0,18	-0,42	-0,44	0,59	0,61	0,24	1	0,63	-0,37
И ₂	-0,87	0,68	0,07	-0,92	0,97	0,97	-0,05	0,63	1	0
И ₃	-0,48	0,73	0,99	-0,39	0,22	0,19	-0,99	-0,37	0	1

Источник: авторская разработка

Source: Authoring

Таблица 4 Построенные регрессионные зависимости

Table 4
Regression dependencies built

Пара	N	r	R^2	DW	Уравнение	Примечание
$H_2 = f(C_1)$	10	0,92	0,84	1,92	$\overline{U}_2 = 4,83C_1 - 6,06$	Автокорреляция
2 1					2 1	отсутствует
$H_2 = f(C_2)$	10	0,68	0,4	0,9	$H_2 = 15.8C_2 - 1.45$	Область
2 2					2 2	неопределенности
$\mathcal{U}_2 = f(\mathcal{S}_1)$	10	0,81	0,62	0,7	$H_2 = 1,563_1 - 15,66$	Положительная
2 1					2 1	автокорреляция
$H_2 = f(3_4)$	10	0,81	0,61	0,83	$H_2 = 1,4563_4 - 66,66$	Положительная
2 1					4	автокорреляция
$3_1 = f(C_1)$	16	0,93	0,85	1,39	$3_1 = 2,49C_1 + 7,62$	Автокорреляция
1 1					1	отсутствует
$3_1 = f(C_2)$	16	0,94	0,88	1,77	$3_1 = 10,32C_2 + 8,97$	Автокорреляция
1 2					1 4	отсутствует
$C_1 = f(C_1)$	16	0,91	0,82	1,27	$C_1 = 3,73C_2 + 0,72$	Область
1 1					1 2	неопределенности

Источник: авторская разработка

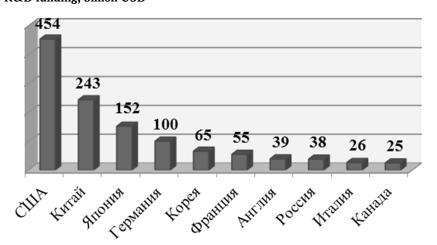
Source: Authoring

 $\it Taблицa~5$ Высшие учебные заведения с наибольшим числом малых инновационных предприятий

 Table 5

 Higher education institutions with the largest number of small innovative enterprises

Наименование высшего учебного заведения	Число МИП
Белгородский государственный технологический университет им. В.Г. Шухова	108
Национальный исследовательский Томский политехнический университет	96
Астраханский государственный университет	41
Казанский (Приволжский) федеральный университет	40
Омский государственный технический университет	38
Южно-Уральский государственный университет	35
(национальный исследовательский университет)	
Астраханский государственный технический университет	34
Национальный исследовательский Томский государственный университет	30
Санкт-Петербургский национальный исследовательский университет	29
информационных технологий, механики и оптики	
Воронежский государственный университет	28
Казанский национальный исследовательский технологический университет	28
Алтайский государственный университет	28
Томский государственный университет систем управления и радиоэлектроники	27
Тюменский государственный университет	27
Ярославский государственный технический университет	27
Белгородский государственный национальный исследовательский университет	26
Поволжский государственный технологический университет	25
Ярославский государственный университет	25
Иркутский государственный технический университет	24
Петрозаводский государственный университет	24


Источник: авторская разработка

Source: Authoring

Рисунок 1

Объемы финансирования НИОКР, млрд долл. США

Figure 1
R&D funding, billion USD

Источник: авторская разработка

Source: Authoring

Список литературы

- 1. *Дежина И.Г., Киселёва В.В.* Государство, наука и бизнес в инновационной системе России. М.: ИЭПП, 2008. 227 с.
- 2. *Хамел Г., Прахалад К.К.* Конкурируя за будущее. Создание рынков завтрашнего дня. Москва: Олимп-Бизнес, 2002. 288 р.
- 3. Чесбро Γ . Открытые инновации. Создание прибыльных технологий. М.: Поколение, 2007. 336 с.
- 4. *Малинецкий Г.Г.* Проекты и риски будущего. Концепции, модели, инструменты, прогнозы. М.: Красанд, 2011. 432 с.
- 5. *Мильнер Б.З., Орлова Т.М.* Организация создания инноваций: горизонтальные связи и управление: монография. М.: ИНФРА-М, 2013. 288 с.
- 6. *Карлик А.Е., Титов А.Б., Алексеев А.А. и др.* Инновационные аспекты развития предприятий. СПб: Изд-во СПбГУЭиФ, 2009.
- 7. *Смородинская Н.В.* Инновационная экономика: от иерархий к сетевому укладу // Вестник ИЭ РАН. 2013. № 2. С. 87–111.
- 8. *Иванова Н.И*. Научная и инновационная политика. Россия и мир. 2011–2012. М.: Наука, 2013. 480 с.
- 9. *Аузан А.А.* «Колея» российской модернизации // Общественные науки и современность. 2007. № 6. С. 54–60.
- 10. Андрюшкевич О.А., Денисова И.М. Формирование предпринимательских университетов в инновационной экономике // Экономическая наука современной России. 2014. № 3. С. 87–104. URL: https://cyberleninka.ru/article/v/formirovanie-predprinimatelskih-universitetov-v-innovatsionnoy-ekonomike

- 11. *Кристенсен К.М., Рейнор М.Е.* Решение проблемы инноваций в бизнесе. Как создать растущий бизнес и успешно поддерживать его рост. М.: Альпина Паблишер, 2014. 290 с.
- 12. *Ицковиц Г*. Тройная спираль. Университеты предприятия государство. Инновации в действии. Томск: Изд-во Томского гос. ун-та систем управления и радиоэлектроники, 2010. 238 с.
- 13. Пахомова Е.А. Методологические основы оценки влияния вуза наукограда на эффективность регионального развития. Saarbürcken: LAP LAMBERT Academic Publishing, 2011. 418 с.
- 14. Панов С.А., Пахомова Е.А., Пахомов А.В. Западный и российский варианты модели тройной спирали как объединенный подход к анализу становления экономики знаний // Национальные интересы: приоритеты и безопасность. 2015. № 25. С. 14–27. URL: https://cyberleninka.ru/article/v/zapadnyy-i-rossiyskiy-varianty-modeli-troynoy-spirali-kak-obedinennyy-podhod-k-analizu-stanovleniya-ekonomiki-znaniy
- 15. Смородинская Н.В. Тройная спираль как новая матрица экономических систем // Инновации. 2011. № 4. С. 166–178.
- 16. *Коробова В.Ф., Жигалова Ю.О.* Оценка инновационного потенциала региона (на примере ивановской области) // Современные наукоемкие технологии. Региональное приложение. 2017. № 1. С. 52–58.
- 17. *Бахтизин А.Р., Акинфеева Е.В.* Сравнительные оценки инновационного потенциала регионов Российской Федерации // Проблемы прогнозирования. 2010. № 3. С. 73–81.
- 18. *Бендиков М.А., Хрусталёв Е.Ю.* Методологические основы исследования механизма инновационного развития в современной экономике // Менеджмент в России и за рубежом. $2007. \, \mathbb{N}^{2} \, \mathbb{C}. \, 3-14.$

Информация о конфликте интересов

Мы, авторы данной статьи, со всей ответственностью заявляем о частичном и полном отсутствии фактического или потенциального конфликта интересов с какой бы то ни было третьей стороной, который может возникнуть вследствие публикации данной статьи. Настоящее заявление относится к проведению научной работы, сбору и обработке данных, написанию и подготовке статьи, принятию решения о публикации рукописи.

pISSN 2073-2872 eISSN 2311-875X

Innovation and Investment

ECONOMETRIC ANALYSIS OF INNOVATIVE DEVELOPMENT DRIVERS IN THE RUSSIAN ECONOMY

Svetlana V. ISTOMINA^a, Tat'yana A. LYCHAGINA^b, Elena A. PAKHOMOVA^c

^a ISC Atomenergoproect, Rosatom State Corporation Company, Moscow, Russian Federation istomina sv@aep.ru https://orcid.org/0000-0002-3600-4447

^b Joint Institute for Nuclear Research, Dubna, Moscow Oblast, Russian Federation lychagina@jinr.ru https://orcid.org/0000-0002-9047-2399

^c Dubna State University, Dubna, Moscow Oblast, Russian Federation rector@uni-dubna.ru https://orcid.org/0000-0002-3572-9614

Article history:

Received 14 June 2018 Received in revised form 25 July 2018 Accepted 10 August 2018 Available online 15 October 2018

O39

Keywords: innovation potential, modeling, triple helix, correlation, regression analysis

Abstract

Subject The article deals with factors shaping the innovative potential and organizational and economic relations that arise during the formation and use of the innovative potential. **Objectives** The research identifies key drivers of the national innovative potential.

Methods We continue setting up an instrumental and methodological approach to adapting the triple helix model to Russia. In this research, we investigate whether University, Industry and Government may cooperate on innovation. We determine it by evaluating how each element influences the origination of innovation.

JEL classification: O32, O38, Results Statistical data herein are divided into three parts by original space - Knowledge, Consensus and Innovation. The article presents econometric models allowing to find factors influencing the innovative potential of the national economy. Based on the models, we make statistically reasonable conclusions and assessments.

> Conclusions and Relevance We identified fundamental factors influencing the number of innovations implemented in Russia for a 15-year period - the level of federal funding, percentage of innovative goods in the total number of goods shipped, specialists with academic degrees. Considering the interaction of the spaces, the Knowledge space acted positively. Summarizing results of quantitative analysis and available facts, we infer that the national economic growth becomes feasible if the State allocates more funding for innovative researches. However, the State should noticeably pay more attention to the national education and science.

> > © Publishing house FINANCE and CREDIT, 2018

Please cite this article as: Istomina S.V., Lychagina T.A., Pakhomova E.A. Econometric Analysis of Innovative Development Drivers in the Russian Economy. National Interests: Priorities and Security, 2018, vol. 14, iss. 10, pp. 1943-1960.

https://doi.org/10.24891/ni.14.10.1943

Acknowledgments

The article was supported by the Russian Foundation for Basic Research as part of project Nº 16-06-00054, Instrumental and Methodological Approach to Adapting the Triple Helix Model to Russia in Line with Historical Retrospect.

^{*} Corresponding author

References

- 1. Dezhina I.G., Kiseleva V.V. *Gosudarstvo, nauka i biznes v innovatsionnoi sisteme Rossii* [State, science and business in the innovation system of Russia]. Moscow, Gaidar Institute for Economic Policy Publ., 2008, 227 p.
- 2. Hamel G., Prahalad K.K. *Konkuriruya za budushchee. Sozdanie rynkov zavtrashnego dnya* [Competing for the Future]. Moscow, Olimp-Biznes Publ., 2002, 288 p.
- 3. Chesbrough H.W. *Otkrytye innovatsii*. *Sozdanie pribyl'nykh tekhnologii* [Open Innovation: The New Imperative for Creating and Profiting from Technology]. Moscow, Pokolenie Publ., 2007, 336 p.
- 4. Malinetskii G.G. *Proekty i riski budushchego. Kontseptsii, modeli, instrumenty, prognozy* [Projects and risks of the future. Concepts, models, tools, forecasts]. Moscow, Krasand Publ., 2011, 432 p.
- 5. Mil'ner B.Z., Orlova T.M. *Organizatsiya sozdaniya innovatsii: gorizontal'nye svyazi i upravlenie: monografiya* [Arranging for innovation: Horizontal nexus and management: a monograph]. Moscow, INFRA-M Publ., 2013, 288 p.
- 6. Karlik A.E., Titov A.B., Alekseev A.A. et al. *Innovatsionnye aspekty razvitiya predpriyatii* [Innovative aspects of corporate development]. St. Petersburg, UNECON Publ., 2009.
- 7. Smorodinskaya N.V. [Innovation economy: From hierarchies to network order]. *Vestnik IE RAN* = *Bulletin of Institute of Economics of RAS*, 2013, no. 2, pp. 87–111. (In Russ.)
- 8. Ivanova N.I. *Nauchnaya i innovatsionnaya politika. Rossiya i mir. 2011–2012* [Scientific and innovative policy. Russia and the world, 2011–2012]. Moscow, Nauka Publ., 2013, 480 p.
- 9. Auzan A.A. [The track of Russian modernization]. *Obshchestvennye nauki i sovremennost' = Social Sciences and Contemporary World*, 2007, no. 6, pp. 54–60. (In Russ.)
- 10. Andryushkevich O.A., Denisova I.M. [The formation of entrepreneurial universities in innovative economy]. *Ekonomicheskaya nauka sovremennoi Rossii* = *Economics of Contemporary Russia*, 2014, no. 3, pp. 87–104. URL: https://cyberleninka.ru/article/v/formirovanie-predprinimatelskih-universitetov-v-innovatsionnoy-ekonomike (In Russ.)
- 11. Christensen C.M., Raynor M.E. *Reshenie problemy innovatsii v biznese. Kak sozdat' rastushchii biznes i uspeshno podderzhivat' ego rost* [The Innovator's Solution: Creating and Sustaining Successful Growth]. Moscow, Al'pina Pablisher Publ., 2014, 290 p.
- 12. Etzkowitz H. *Troinaya spiral'*. *Universitety Predpriyatija Gosudarstvo*. *Innovatsii v deistvii* [The Triple Helix: University–Industry–Government Innovation in Action]. Tomsk, TUSUR University Publ., 2010, 238 p.
- 13. Pakhomova E.A. *Metodologicheskie osnovy otsenki vliyaniya vuza naukograda na effektivnost' regional'nogo razvitiya* [Methodological principles for evaluating the impact of the university in a science city on the regional development efficiency]. Saarbürcken, LAP LAMBERT Academic Publ., 2011, 418 p.
- 14. Panov S.A., Pakhomova E.A., Pakhomov A.V. [Western and Russian versions of the triple helix model as an integrated approach to analyzing the formation of knowledge-based economy]. *Natsional'nye interesy: prioritety i bezopasnost' = National Interests: Priorities and Security*, 2015, no. 25, pp. 14–27. URL: https://cyberleninka.ru/article/v/zapadnyy-i-rossiyskiy-varianty-modeli-troynoy-spirali-kak-obedinennyy-podhod-k-analizu-stanovleniya-ekonomiki-znaniy (In Russ.)

- 15. Smorodinskaya N.V. [Triple Helix as a new matrix of economic systems]. *Innovatsii* = *Innovations*, 2011, no. 4, pp. 166–178. (In Russ.)
- 16. Korobova V.F., Zhigalova Yu.O. [Estimation of innovative potential of region (on the example of the Ivanovo Area)]. *Sovremennye naukoemkie tekhnologii. Regional'noe prilozhenie = Modern High Technologies. Regional Application*, 2017, no. 1, pp. 52–58. (In Russ.)
- 17. Bakhtizin A.R., Akinfeeva E.V. [Comparative estimates of innovation potential of the regions of the Russian Federation]. *Problemy prognozirovaniya = Problems of Forecasting*, 2010, no. 3, pp. 73–81. (In Russ.)
- 18. Bendikov M.A., Khrustalev E.Yu. [Methodological principles for studying the innovative development mechanism in the contemporary economy]. *Menedzhment v Rossii i za rubezhom = Management in Russia and Abroad*, 2007, no. 2, pp. 3–14. (In Russ.)

Conflict-of-interest notification

We, the authors of this article, bindingly and explicitly declare of the partial and total lack of actual or potential conflict of interest with any other third party whatsoever, which may arise as a result of the publication of this article. This statement relates to the study, data collection and interpretation, writing and preparation of the article, and the decision to submit the manuscript for publication.